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MODIFICATION OF THE METHOD OF DISCRETE CONTINUATION 

BY PARAMETERS 

E. I. Grigolyuk and E. A. Lopanitsyn UDC 539.3 

We consider a system of nonlinear equations 

F~(xl ,  x2 . . . .  , x~ ,  p )  = 0 (~ = 1, n) ,  ( 1 )  

where  x i ( i  = 1, n)  a r e  a rgumen t s  and p i s  t h e  s o l u t i o n  p a r a m e t e r .  N o n l i n e a r  p rob lems  o f  
m e c h a n i c s  can o f t e n  be r e d u c e d  t o  s y s t e m s  o f  t h i s  k i n d .  One such  e l e m e n t a r y  p rob lem i s  t h e  
p rob lem o f  a x i s y m m e t r i c  b u c k l i n g  o f  an i s o t r o p i c  c i r c u l a r  p l a t e  a c t e d  upon by r a d i a l  f o r c e s  
N o d i s t r i b u t e d  u n i f o r m l y  on t h e  c o n t o u r  and by a t r a n s v e r s e  l o a d  q: 

r-yfr -'s (r2Nr) + - ~ -  -$fr = 0, 

(2) 
r dr r W --dFr r ~r IJJ r dr r3~  --Ji-r = 9 (0 <~ r <~ R), 

dw/dr = Qr = ur = 0 for r = 0, w = M r = 0, Nr  = - - N o  for: r = R. 

Here ,  u r and w a r e  t h e  r a d i a l  d i s p l a c e m e n t  and t h e  d e f l e c t i o n ;  Nr,  Mr, and Qr a r e  t h e  s p e c i -  
f i c  r a d i a l  f o r c e ,  t h e  b e n d i n g  moment, and t h e  s h e a r i n g  f o r c e ;  E and D a r e  Y o u n g ' s  modulus 
and t h e  c y l i n d r i c a l  r i g i d i t y  o f  t h e  p l a t e ;  R and h a r e  t h e  p l a t e ' s  r a d i u s  and t h i c k n e s s ,  
r e s p e c t i v e l y .  

We p r o p o s e  t o  c o n s t r u c t  t h e  l o a d i n g  t r a j e c t o r y  o f  a m e c h a n i c a l  o b j e c t  whose b e h a v i o r  
i s  d e s c r i b e d  by s y s t e m  ( 1 ) :  

z~ = x~(p) (~ = i ,  n).  

The method of continuous parameter continuation is convenient for solving this problem. 
With this method one constructs the loading trajectory at all points that are regular in 
the Poincare sense, including the limiting points of the trajectory. The idea of this meth- 
od was first advanced in [i]. Its detailed elaboration, which considers the equivalence of 
solution variables, was given in [2]. However, this method has a shortcoming: In the course 
of numeric construction of the loading trajectory, an uneliminable error accumulates in the 
solution. After several steps in the continuous continuation method, one has to adjust its 
solution. This adjustment is done by an algorithm that relies on the techniques of the 
method of discrete continuation in the parameter, which also implements the concept of equiv- 
alence of parameters [2]. On this basis, one can adjust the solution at regular and limit- 
ing points of the trajectory. Without reviewing the various methods of continuous and dis- 
crete continuation (such a review can be found in [2, pp. 12-23, 176-196]), we will examine 
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three adjustment varian,ts. The first of these is well k n o ~ .  It is taken as the basis for 
the other two algoritNns (which have never been published). 

We assume that the parameter p is a variable on a par with x i (i = i, n): Xn+ I = p. 
Suppose that, by, the continuous continuation method, a solution x i (i = i, n + i) has been 
obtained and must be adjiusted. According to Newton's method, we write at this point of the 
loading trajectory the algebraic system for errors of (I): 

af{ 
&aA~=--& (a=l.n), &,j=~, ~=. 5+Axj 

i = ,  ( 3 )  

( ] =  1, n + l ) .  

The system consists of n linear equations for n + 1 unknown quantities Axj. Its definition 
must be completed so that Axj (j = I, n + i) will be defined at any regular point on the 
trajectory with the maximum possible conditionedness. The following procedure was suggested 
for this purpose in [2]. 

With the method of continuous continuation applied at any point of the loading trajec- 
tory, we can define a unit vector which is tangential at a given point to the loading tra- 
jectory: 

@ = ( ~ : %  -.- 9 ~ + : ) L  x~ = 9~ (i = t ,  n + 1). 

Here, xi (i = i, n + i) is the derivative of the variable x i with respect to an arc X of the 
loading trajectory. It can be demonstrated (see [2]) that if we try to find the increment 
Axj (j = i, n + i) in the direction perpendicular to the vector ~, the process of search for 
the increment will be best conditioned at each regular point of the loading trajectory. The 
best conditionedness at these points is equal to the maximum conditionedness of one of the 
following matrices: 

Fit , . .  F l k - :  F : h = :  . . .  F : ~ . : ]  

JR= \ ) , : l  "" : '"  Fn',h : "F;'.I'~:I'- [" " 7,],nil] (~ = "1, n ~- i). 

The p r o c e s s  l e a d s  t o  t h i s  s y s t e m  f o r  f i n d i n g  t h e  i n c r e m e n t s :  

;,,;... ! - ; ;  
% . . .  q~n %~+: / \ k x , ~ + : /  O 

(4) 

At large n, the process for each iteration takes an amount of time proportional to 2n ~ if 
the solution of (4) is found by the orthogonalization method (as suggested in [2]), or to 
2n3/3 if Gaussian-type methods are employed. The memory capacity required in both cases 
is proportional to n 2. 

The second alternative of specification of the loading trajectory parameters should 
be applied when the Jacobian matrix of (i) is symmetric: 

a , ~ + : =  : �9 �9 �9 ' , F : , j = F j , ~  ( i , ] = t , t  0. 

In this case, (3) is supplemented with the equation F:,n+zAx: + ... + Fn,n+zAx n + ekxn+: = 
0. This equation means that the direction in which we seek the increments kx i (i = I, n + i) 
is perpendicular to the vector ~* = (F:,n+:...Fn,n+:e)T (~ is the indefinite parameter to be 
determined later). The resulting equations system for determ:nation" of gx i (i = i, n + i) 
has a symmetric matrix 

. i .   oo = -  

F : , n + :  . . .  F,~.,,+: e Z \ A x , ~ + :  0 
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which is less conditioned the greater is the angle between the vectors �9 and O*. Therefore, 
we should try to find e in such a way as to minimize the angle between the vectors �9 and O*. 
On the basis of this condition, we write 

n / ~ =  Fi,~+lgi" 
(Z : ~min  for 8 : 9n@-I ~ 1  F2  i ,n+l 

This variant of adjustment requires for symmetric matrices Jn+l a memory capacity pro- 
portional to (n 2 + n)/2; the time of realization of an iteration with a Gaussian method is 
proportional to n3/3. 

In the third variant of solution adjustment, the new approximation of (3) is sought in 
the direction defined by the gradients of the functions F i (i = i, n): 

11+1 n n ~-I 

AX = ~,  Axie~----- E t i g r a d F j  = E E OFj,iei 
i:i j:l J=i i:i 

[tj (j = i, n) are the parameters that specify the direction where the adjustment of the 
solution should be sought]. Hence, 

Ax i : ~ t j f  L~. 
J=l 

Substituting (5) into (3), we obtain an equations system for tj (j = i, n): 

( 5 )  

where 

n T  = - -F ,  ( 6 )  

t t  = j , j , v ;  T = (t~t 2 ..... t~)T; F ---- (F~F 2 .... F , ) r ;  

/ F11 . . .  F l u  F I~+I '~  
J * = / .  ~ �9 �9 �9 ' . '  

F ~ ,  . : .  F~ '~ 'F~§ 

Solving (6), we find tj (j = i, n). On this basis, from (5) we obtain (i = i, n + I). 

The matrix H is always symmetric and of order n. Therefore, for solution of (6) we 
need a memory capacity of (n 2 + n)/2 and a time proportional to n3/3 if a Gaussian method 
is used. However, we should also count the capacity for memorizing the matrix J* and the 
time of formation of the matrix H. Thus, the total time for implementation of an iteration 
will be proportional to 4n3/3, and the memory to n 2 (if the matrix Jn+l was initially sym- 
metric). If Sn+l was asymmetric, the realization time of an iteration remains the same, but 
the required memory capacity grows to (3n 2 + n)/2. 

The iteration process realized with the aid of (6) has the maximum possible conditioned- 
ness at any step in the neighborhood of a regular point or the limiting point of the loading 
trajectory, because the matrix H is not singular at these points. Its determinant is 

n + l  

det (It) = ( - -  t) ~ .~ [det (Jh)] ~. 
h = l  

The matrices $ k (k = i, n + I) degenerate simultaneously only at the branching point of the 
trajectory. With this conditionedness of the process, the laboriousness of the iterations 
can be reduced. Without any significant deterioration of convergence, we can form the ma- 
trix H, invert it only at the first iteration, and subsequently adjust the solution with the 
aid of the inverse matrix. Now for an iteration we will need the time on the order of 4n 2. 
The number of iterations with the continuous continuation method taken as the initial approx- 
imation has been estimated to be increased by one or two. 

With these techniques the accuracy of solutions of a nonlinear equations system by the 
method of continuous continuation can be greatly improved, the laboriousness can be reduced 
by increasing the integration step on the trajectory, and the stability of the solution can 
be enhanced in the neighborhood of the branching points of the loading trajectory. For exam- 
ple, in solving the axisyn~netric problem of combined loading of a circular plate (2) on the 
basis of an exact solution in a Way power series [3], these techniques made it possible to 
traverse all branches of the loading trajectory. The trajectory is depicted in Figs. 1-3. 
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Here, w0, Mr0 , and Nr0 are the deflection, the bending moment, and the tensile force at the 
plate center. Initially, the plate is loaded by a uniform contour load N o . This force 
causes the plate to lose stability in the first axisymmetric form (point A). It is brought 
along the bifurcation branch ABC to the transcritical region, where for N o the value of 30D/ 
R 2 (point C) is formed. After that, a uniform transverse load q is applied to the plate on 
the convex side. It buckles along the branch CDEQFGIPJKL, like a low-angle spherical dome. 
The loading trajectory includes limiting points B, D, E, F, I, J, K, and S and bifurcation 
points A, H, G, P, and Q. Points P and Q are intersections of the plate's loading trajec- 
tory with the bifurcation branch, corresponding to the second axisymmetric form of stability 
loss. 
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OSCULATION OF TWO NONLINEARLY ELASTIC BODIES 

L. G. Dobordzhginidze UDC 539.3 

The problem of osculation of two solids S z and S 2 similar in shape to a half-plane and 
made of a nonlinearly elastic harmonic-type material is investigated [i]. The contact area 
is assumed to be free of friction. An exact solution is obtained. 

i. We consider physical regions S z and S 2 with boundaries of close-to-linear shape. 
After deformation, they come into contact along the common portion L of their respective 
boundaries L I and L=. The contact of the bodies is accomplished by external forces, whose 
principal vector is P0 = X + iY (P0 is a known constant). The contact region L is assumed 
to consist of a finite number of segments of the real axis ox: L : [alb I] + ...-~ [a~b~]. Sup- 
pose that S l and S 2 occupy the lower and upper half-planes of the plane of the variable z = 
x + iy [2]. Quantities referring to S I and S 2 will be identified by subscripts i and 2, re- 
spectively. Stresses and rotations are absent for these bodies at infinity. 

The boundary conditions of the problem are [3] 

v7 - -  v~ = / (x), T 1 (x) = T, 2 (x) = 0, N 1 (x) = N= (x) = N (x) on L, ( 1 . 1 )  

On t h e  r e m a i n i n g  p o r t i o n s  o f  t h e  b o u n d a r i e s  t h a t  a r e  f r e e  o f  e x t e r n a l  a c t i o n s  

N = 0, T = O. ( 1 . 2 )  

Here N and T are the normal and the tangential stresses; v is the normal elastic displace- 

ment; f(~) = f=(~) - f1(~) is a function specified on the deformed contact line; fl and f2 
characterize the configuration of the compressed bodies after deformation. It will be re- 

called that x = x + u, u = u(x) is the horizontal elastic displacement of the points of the 

line L. We will assume that f'(~) e H(L). 

The solution makes use of a complex representation of the fields of elastic elements 
for a half-plane in terms of two functions ~(z) and ~(z) of the complex argument z = x + ty 
which are analytic in that half-plane [4]: 

X ~ +  Y~,+ 4~ - (~-+-2p0q~(q)  Y y - - X ~ - - 2 t X y  = - -  4(~+2,tt) g~(q) az* Oz* 

�9 V 7  ' " ] / y  q o~ ~i' (i.B) 

~ r  ~ + ~  I 9 ( ' I  + ~ ] - ~ ;  
u + w - -  ~ + 2 ~  ~ [ ~ ' ( z )  (1.4) 

Oz* ~t 
- - , ~ ' ~ ( z ) §  ~ + 2 ~  ~--~=f o~ - ~+2~ 

_ _  [ ~o (z) ~o" (z) ~ ' ( z ) ] ,  
~"(z) (1.5) 

where 

Z*----Z + U-~- tV; 0"-7" : Y -~x- - t -~Y , 0z --  2 ~ + t - ~  
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